Sígueme también en:
Siguenos en Facebook Síguenos en Twitter Siguenos en YouTube Siguenos en Blogger

viernes, 27 de junio de 2014

Tutorial de Electrónica Básica. 10. Circuitos Integrados

Circuitos integrados, también conocidos como chips o "IC" abreviatura del inglés: Integrated Circuit
Mis redes sociales:

ÍNDICE

01. Definición. Qué es un circuito integrado
02. Historia.
03. Clasificación según su construcción
     3.1. Monolíticos
     3.2. De película delgada o gruesa
     3.3. Híbridos
04. Clasificación según el tipo
     4.1. Según la función: Analógicos y digitales
     4.2. Según la escala de integración
05. Saber lo esencial de un circuito integrado. El Datasheet
06. Encapsulados. Zócalos.
07. Reconocer el orden de los terminales en un circuito integrado.
08. Algunas funciones típicas de los circuitos integrados
     8.1. Propósito general
     8.2. Memorias
     8.3. Microcontroladores / Microprocesadores
09. Ejemplo de utilización de un circuito integrado: Pequeño amplificador de 
     audio

10. RINCÓN DE LA TEORÍA. El EFECTO LARSEN.

11. El vídeo







1. Definición. Qué es un circuito integrado.

Un circuito integrado es una pequeña superficie o pastilla (chip) hecha con material semiconductor en la que se construye un circuito electrónico que puede constar desde unos pocos componentes hasta miles o incluso millones de ellos. Este chip -al igual que otros semiconductores: Transistor, diodo, triac, etc.- va protegido por un encapsulado, y de él asoman los terminales o pines para ser conectado al circuito que lo incorpore.
 


2. Historia.

La necesidad de miniaturizar los equipos fue la que propició el invento del circuito integrado. Casi de forma simultánea fueron al menos tres personas las que hicieron realidad este componente:

- Jack Kilby, trabajaba para la empresa Texas Instruments, se le ocurrió integrar seis transistores en una única pastilla semiconductora para hacer un circuito oscilador con el mínimo tamaño. 

- Werner Jacobi, un ingeniero alemán que también contribuyó a la expansión y auge de los c.integrados.

- Rober Noyce, uno de los fundadores de la empresa Intel, fue de los primeros en comercializar un circuito integrado. También fundó la conocida empresa "Fairchild Semiconductor".

Desde entonces y hasta hoy, estos primeros (y "sencillos") circuitos integrados han visto mejorar sus prestaciones en una carrera meteórica. Se han solucionado infinidad de problemas que tenían estos primeros c.integrados, y sobretodo, se ha conseguido un proceso de fabricación que permite hacer cantidades ingentes, lo que permite un precio final bastante bajo, teniendo en cuenta lo complejo y costoso del diseño de uno de estos circuitos integrados



3. Clasificación según su construcción

3.1. Monolíticos
A esta clase pertenecen la gran mayoría. Como su nombre deja ver, constan de un sólo cristal de semiconductor en donde van todos los componentes. Tienen la limitación de que sólo sirven para potencias reducidas (del orden de uno o pocos W).

Circuito 555, típico representante de fabricación en formato monolítico


3.2. De película delgada o gruesa.
Para potencias mayores que los monolíticos, también ocupan mas espacio aunque siguen siendo de tamaño mas reducido que el equivalente con componentes "discretos". Se entiende por componente "discreto" aquél "de toda la vida", es decir, componentes por separado, clásicos: resistencias, condensadores, transistores, diodos, bobinas...

 
3.3. Híbridos
Es una combinación de los dos anteriores. Los circuitos híbridos se usan también para potencias relativamente altas, como los amplificadores de audio. La conocida serie STK pertenece a esta categoría.

Circuito integrado HIBRIDO



4. Clasificación según el tipo

4.1. Según la función: Analógicos y digitales

- Analógicos: Tratan señales de tipo analógico. Por ejemplo, amplificadores, osciladores, procesadores de señal (audio, vídeo, señal de radio, datos, tensiones que equivalen a una magnitud física...).

Suelen tener una función concreta y definida, aunque a menudo tienen cierta flexibilidad en su uso según qué componentes se asocien a ellos: A sus terminales se conectan una serie de componentes externos, discretos. Según la disposición y el valor de estos componentes discretos, el integrado se comportará de una manera u otra. Ejemplo de esto son los circuitos operacionales.

- Digitales: Emulan el álgebra de boole, por lo tanto en lugar de trabajar con cualquier valor de tensión como los analógicos, funcionan mas bien con dos tensiones bien diferenciadas que simulan ser el "1" y el "0". Así, se puede establecer una correspondencia entre cada uno de estos dos valores de tensión y el álgebra de Boole:

0: Falso, no conectado, tensión cero
1: Verdadero, conectado, tensión 5 voltios

Estos integrados digitales llevan en su interior muchos transistores que simulan el 1 y el 0 según conduzcan o no.

Existen las llamadas puertas lógicas, que son la unidad básica en electrónica digital (dedicaré un capítulo a las puertas lógicas). Hay integrados que contienen varias puertas lógicas en su interior, y es el usuario quien conecta estas puertas por medio de los terminales del circuito integrado.

El siguiente dibujo es un circuito integrado "7408" que incorpora cuatro puertas "and". Emulando el Álgebra de Boole, la salida de cada puerta sólo es "verdad" si ambas entradas son verdad:

Circuito 7408, consta de cuatro puertas "AND" de dos entradas cada una.


Otro tipo de integrado digital, ya mas avanzado, son las memorias, los microprocesadores, multiplexores y demultiplexores, codificadores y decodificadores...



4.2. Según la escala de integración

Un circuito integrado, atendiendo al número de componentes que contenga en su interior, puede ser:

SSI. Short Scale Integration: Es la escala menor. Comprende hasta unos 100 transistores.

MSI. Medium Scale Integration: Hasta 1000 transistores

LSI. Large Scale Integration: Hasta 10.000 transistores, lo que permite implementar mas de 1000 puertas lógicas. Con esto ya se puede hacer un circuito que realice operaciones concretas, como un display digital, una calculadora básica, un driver...

VLSI. Very Large Scale Integration: Hasta 100.000 transistores. Esta escala de integración hizo posible la miniaturización y simplificación de la electrónica de consumo. El concepto "portátil" comienza a hacerse realidad.

ULSI. Ultra Large Scale Integration: Hasta 1.000.000 de transistores.

GLSI. Gyga Large Scale Integration: Más de 1.000.000 de transistores. Los microprocesadores con esta escala de integración son realmente potentes y son la base de los actuales ordenadores, tablets, smartphones, etc.




5. Saber lo esencial de un circuito integrado: El datasheet

Como con el resto de semiconductores (transistor, diodo, triac, tiristor) hallaremos en datasheet la información mas relevante de un circuito integrado. Lo mas importante es:

- Qué función realiza
- Orden y función de las patillas o terminales
- Configuraciones (cuando proceda, y no siempre)

Por ejemplo, tenemos a continuación la información del conocido circuito 555 en versión LM555 (National Semiconductor) en datasheet donde podemos ver dos de las doce páginas de información. Allí se describe para qué sirve este integrado, sus características principales, el orden y función de los terminales...





Internet puede ser nuestro aliado para obtener esta información. Basta con poner en un buscador el código del circuito para que aparezcan páginas con información.
6. Encapsulados. Zócalos

Como ocurre con todos los semiconductores, el verdadero componente va recubierto de una envoltura protectora que se conoce como "encapsulado", que suele ser de plástico o cerámico. Hay gran variedad de formatos y encapsulados para circuitos integrados, incluyendo el formato SMD que se usa de forma casi exclusiva para los dispositivos modernos como ordenadores y smartphones. 

Los encapsulados mas comunes son:

DIP (Dual In line Package)

Los terminales van dispuestos en dos hileras paralelas a ambos lados del integrado. El número de patillas puede variar desde un mínimo de 8 (cuatro a cada lado) hasta 64 patillas (32 a cada lado) como es el caso de los microprocesadores de algunos electrodomésticos como TV, los antiguos vídeos...

Circuito integrado DIP

Este encapsulado es de los más antiguos, se usa en integrados de baja y media escala de integración. El integrado se inserta en el circuito impreso por el lado de los componentes de la misma forma que un componente discreto, y se sueldan sus terminales por el lado de las pistas de cobre.

Para este encapsulado existe la opción de usar un zócalo de modo que no se suelda el integrado sino que se acopla a dicho zócalo, lo que hace más rápida y cómoda la operación de poner/quitar el integrado en el circuito, además de evitar el stress de la soldadura. Esto es muy útil para circuitos integrados programables ya que tienen que ser retirados del circuito para programarlos.

Zócalos para circuitos integrados DIP


SIP (Single In line Package)

También es uno de los primeros formatos de encapsulado, y al igual que el DIP, se usa en pequeña y mediana escala de integración. Constan de una sola hilera de terminales (de 4 a 24). Se fijan al circuito igual que los DIP: Por el lado de los componentes y soldando sus terminales por el lado del cobre.

Encapsulado SIP
 
Los dos encapsulados anteriores son los mas sencillos de manejar por el aficionado, pues se sueldan en un circuito como un componente más, además, la distancia entre terminales es relativamente grande, lo que hace que su soldadura/desoldadura no sea problemática. 

A continuación veremos unos cuantos formatos más de encapsulado, ya no tan fáciles de manejar, pues son SMD (montados en superficie), es decir, se sueldan directamente en el lado del cobre y sus terminales están bastante próximos, lo que hace necesaria una gran pericia para manipularlos y en ocasiones disponer de estaciones de soldadura específicas.


SOIC (Small Outline Integrated Circuit)

Recuerdan al formato DIP, pero éstos son para montaje SMD. También se les conoce como "alas de gaviota" por la forma de sus terminales.
Encapsulado SOIC

SOJ (Small Outline J-Lead)

Sus terminales recuerdan la letra "J" y de ahí su nombre. 
Este encapsulado se utiliza para hacer memorias DRAM

Encapsulado SOJ




TSOP (Thin Small Outline Package)

Se utilizaron inicialmente para hacer módulos de memoria SIMM, ahora también forman módulos de memoria DRAM. Este encapsulado tiene terminales con la forma de "ala de gaviota", como las SOIC.

Encapsulado TSOP

PLCC (Plastic Leaded Chip Carrier)

Los terminales aparecen ahora por los cuatro lados del chip. El chip puede ser cuadrado o rectangular. Los terminales tienen forma de J para ahorrar espacio. Pueden tener más de 100 terminales. Existen zócalos para este tipo de encapsulado.
Encapsulado PLCC


QFP (Quad Flat Package)

Una variante del anterior, ahora los terminales vuelven a tener forma de "ala de gaviota" en lugar de forma de "J". Los hay desde unos pocos pines (terminales) hasta más de 200. Se sueldan con una pasta especial y también existe la opción del zócalo para este encapsulado.
Encapsulado QFP


PGA (Pin Grid Array)

En este encapsulado la novedad consiste en que los pines o terminales del chip van por debajo (y no a los lados), lo que reduce notablemente el espacio. Es el formato típico de los microprocesadores.
Encapsulado PGA

BGA (Ball Grid Array)

Parecido al anterior, la mejora consiste en que en lugar de terminales con forma de pin, son de forma esférica. Esto permite aumentar el número de pines sin aumentar el volumen del integrado ni disminuir mucho la distancia (ya bastante reducida) entre pines.
Encapsulado BGA


Hay muchos mas formatos de encapsulado que los aquí expuestos, y además, surgen nuevos formatos con frecuencia debido al gran avance de estas tecnologías.




7. Reconocer el orden de los terminales en un c.integrado

A la hora de hacer alguna medición en un pin concreto de un integrado, o simplemente por conocer el orden de dichos pines, vamos a ver cómo reconocer en que orden van dispuestos.

Lo más práctico y fiable es el la hoja de especificaciones o datasheet

En circuitos con:

encapsulado DIP:

Orden de los pines (terminales) en un circuito integrado DIP, SIP y SMD

En el dibujo sobre estas líneas vemos una señal en un extremo del chip (el chip mas a la izquierda). A veces esta señal es una muesca o hendidura, otras veces es un punto impreso en el encapsulado. Esta señal marca el pin número 1. A continuación, siempre en sentido contrario a las agujas del reloj, iremos contando progresivamente 2, 3, 4 hasta llegar al final de la hilera.

A continuación subimos a la otra hilera de pines y ahora numeramos de derecha a izquierda. Iremos numerando siempre en sentido contrario a las agujas del reloj. Y así hasta llegar al pin más de la izquierda.


encapsulado SIP

En el mismo dibujo anterior, el chip del centro es de tipo SIP.
Aquí es bastante intuitiva la cosa: Mirando hacia nosotros el chip por la parte que pone su código, numeramos de izquierda a derecha, empezando por la patilla "1" tal como si estuviésemos leyendo.


Tipos SMD

Para los restantes tipos de encapsulado (chip a la derecha del dibujo), suele haber una marca en una esquina que determina el pin número uno. También aquí, en sentido contrario a las agujas del reloj, iremos numerando.



8. Algunas funciones típicas de los circuitos integrados

8.1. Propósito general

No hay prácticamente función o trabajo que no pueda hacer un circuito integrado. Se diseñan para cualquier propósito. Los hay que realizan funciones básicas, tales como amplificadores, osciladores, contadores, divisores de frecuencia, comparadores, funciones lógicas, interpretación de melodías musicales; y también los hay que realizan funciones mas complejas e incluso una función completa por sí misma, como el control de una calculadora, un receptor de ondas de radio, alarmas, el control de un GPS, un mando a distancia codificado...


8.2. Memorias

Como los circuitos integrados están basados en miles o millones de componentes y uno de los componentes más fáciles de incluir es el transistor, esto lo hace candidato ideal para hacer memorias con ellos, ya que un transistor puede emular la lógica de boole que está basada en el código binario (ceros y unos) según el transistor adopte uno u otro de los dos estados que le son caracteristicos: En corte (no conduce) o en saturación (conduce).

Cada día se hacen memorias con más y más capacidad. Hace unos pocos años, los PC tenían unas pocas K de memoria. El mismo Bill Gates dijo: "Con 640 Kb de RAM se debería poder hacer cualquier cosa". Hoy, cualquier ordenador tiene varios miles de veces mas memoria RAM. Por ejemplo, dos GB (que hoy ya no es nada espectacular) son unas 3000 veces mas memoria que 640 Kb...

Y nada parece indicar que la carrera de mejora en las memorias se vaya a detener...

Módulo de memoria con ocho chips


 
8.3. Microcontroladores / Microprocesadores

Otro uso por excelencia para los circuitos integrados. De no ser por ellos no existirían los ordenadores tal y como los conocemos en la actualidad. 

Los primeros ordenadores (sin circuitos integrados) ocupaban habitaciones enteras e incluso la planta entera de un edificio, toda llena de electrónica "clásica", y con un consumo digno de una pequeña central. Así eran los primeros ordenadores, y no tenían la potencia de los actuales, ni mucho menos...

Microprocesador actual



9. Práctica con un circuito integrado: Pequeño amplificador de audio

En el vídeo del siguiente enlace, de la colección "circuitos útiles", podemos hacer un circuito práctico basándonos en un circuito integrado como componente principal.

Pequeño amplificador de sonido con circuito integrado LM386



10. Rincón de la Teoría. El EFECTO LARSEN

También conocido como Realimentación o -del inglés- "feedback".
Es un fenómeno que ocurre en la naturaleza y también puede suceder en los equipos electrónicos.

Este fenómeno ocurre cuando un hecho "A" favorece que se produzca otro hecho "B", y a su vez el hecho "B" favorece que se produzca el hecho "A", y así se establece un bucle que va en aumento hasta que algún límite impide que vaya a más.

Esto tiene especial importancia en el mundo del sonido. Todos hemos escuchado de un escenario ese potente y molesto pitido. Decimos que hay "acople", nombre con el que también se conoce este fenómeno.

Realimentación. Efecto Larsen


En el dibujo vemos cómo se produce este fenómeno:

a) Por ejemplo, la voz del cantante es captada por el micrófono

b) La señal del micrófono se envía al amplificador y actúa sobre los altavoces

c) El sonido proveniente de los altavoces actúa de nuevo sobre el micrófono, que vuelve a enviar la misma señal al amplificador y de ahí a los altavoces...

d) Y se repite el proceso en un bucle, originando ese molesto pitido cuya intensidad y frecuencia dependerá de muchos factores: Distancia entre micro y altavoces, direccionalidad del micro, curva de respuesta del equipo...


Cómo evitar el efecto Larsen:

- Usar micrófonos direccionales
- No dirigir el micrófono a los altavoces
- Situar los micrófonos lejos de los altavoces
- El micrófono, siempre detrás de los altavoces
- Si se dispone de ecualizador, atenuar la banda de frecuencia a la que se produce el acople.
- Reducir el volumen del equipo




11. El vídeo




Mis redes sociales:
Youtube: Mi canal de Youtube, donde están todos mis vídeos
Twitter: @Terrazocultor
Facebook: Terrazocultor
Instagram: Fotos, esquemas, dibujos...

5 comentarios:

  1. hola me gustaría un vídeo de como hacer un conversor de continua a alterna o si tenes algun circuito que me recomiendes para hcer un conversor

    ResponderEliminar
  2. Este comentario ha sido eliminado por el autor.

    ResponderEliminar
  3. Hola megustaria que isieras un video de como se ace un amplificador con un sircuito integrado LA4597 gracias por tus videos son mui buenos.

    ResponderEliminar
  4. hola... amigo mucho gusto en saludarlo, quisiera saber si tiene algun video para hacer un circuito que mida los niveles de agua en los tinacos y pueda verlos desde dentro de la casa. gracias.. Francisco Del Val

    ResponderEliminar
  5. Hola como están me gustaría que explicara la letra o abreviatura que salen en las patas de cada circuito integrado como por ejemplo vss.VCC.rcoutint de antemano le agradesco y si lo logra hacer decirnos donde lo podemos ver

    ResponderEliminar